博客
关于我
tfhub简介
阅读量:603 次
发布时间:2019-03-11

本文共 1583 字,大约阅读时间需要 5 分钟。

TensorFlow Hub模型的应用与示例分析

本文将介绍如何使用TensorFlow Hub中的中文分词模型进行文本嵌入操作,并展示其在实际应用中的示例分析。

模型简介

我们使用了TensorFlow Hub中的nnlm-zh-dim50-with-normalization_2模型,该模型是一个预训练的多层感知机模型,适用于中文文本的嵌入任务。该模型的特点包括:

  • 模型大小:50维嵌入空间
  • 输入类型:文本字符串
  • 输出类型:50维实数向量

模型能够将输入文本映射到一个高维空间,捕捉文本中的语义信息,为后续的文本分析任务提供有用特征。

模型加载与使用

首先,我们需要加载模型到TensorFlow环境中。

import tensorflow_hub as hubhub_layer = hub.KerasLayer("./nnlm-zh-dim50-with-normalization_2",                            output_shape=[50],                           input_shape=[],                           dtype=tf.string)

接着,我们可以通过模型进行文本嵌入计算。

model = tf.keras.Sequential()model.add(hub_layer)model.add(tf.keras.layers.Dense(16, activation='relu'))model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

模型摘要如下:

model.summary()

文本嵌入示例

我们可以通过以下代码进行文本嵌入操作:

embeddings = hub.load("./nnlm-zh-dim50-with-normalization_2")embeddings = embeddings(["男 人", "女 人"])

嵌入结果的形状为:

embeddings.shape

输出结果为:

(2, 50)

这意味着嵌入结果是一个2行、50列的矩阵。

嵌入结果可视化

我们可以将嵌入结果转换为numpy数组进行可视化分析:

v1 = embeddings[0].numpy().reshape(1, -1)v2 = embeddings[1].numpy().reshape(1, -1)

通过以下代码计算余弦相似度:

from sklearn.metrics.pairwise import cosine_similarity

余弦相似度计算结果如下:

cosine_similarity(v1, v2)

输出结果为:

[[0.9762976217778619]]

这表明输入句子之间的语义相似度较高。

模型训练与优化

通过上述代码示例可以看出,TensorFlow Hub模型的加载和使用非常简单。我们可以根据具体需求对模型进行进一步的训练和优化。

模型最终结构如下:

model.summary()

输出结果为:

Model: "sequential"Layer 1: HubKerasLayer [input_shape=[..., dtype=tf.string]]Layer 2: Dense(16, activation='relu')Layer 3: Dense(1, activation='sigmoid')

模型优势

该模型具有以下优势:

  • 轻量级:适合快速进行文本嵌入计算
  • 可扩展:支持多种文本预处理任务
  • 高效:能够快速映射文本到嵌入空间

通过以上示例可以看出,TensorFlow Hub模型在文本嵌入方面具有较强的实用性和灵活性。

转载地址:http://nhbtz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_实际操作_02---大数据之Nifi工作笔记0032
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_使用NIFI表达式语言_来获取自定义属性中的数据_NIFI表达式使用体验---大数据之Nifi工作笔记0024
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_内嵌ZK模式集群2_实际操作搭建NIFI内嵌模式集群---大数据之Nifi工作笔记0016
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_02---大数据之Nifi工作笔记0034
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>